MAC 2311 Recitation 2

Anthony Asilador

January 21, 2021

1 Problems

Definition: Let $A \subseteq \mathbb{R}$, and let c be a cluster point of A. For a function $f : A \to \mathbb{R}$, a real number L is said to be a limit of f at c if, given any $\varepsilon > 0$, there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

Remark: If the limit of f at c does not exist, we say that f diverges at c.

Theorem: If $f: A \to \mathbb{R}$ and if c is a cluster point of A, then f can have only one limit at c.

Squeeze Theorem: Let $A \subseteq \mathbb{R}$, let $f, g, h : A \to \mathbb{R}$, and let $c \in \mathbb{R}$ be a cluster point of A. If

$$f(x) \le g(x) \le h(x)$$
 for all $x \in A, x \ne c$ (1)

and if $\lim_{x \to c} f = L = \lim_{x \to c} h$, then $\lim_{x \to c} g = L$.

Definition: Let $I \subseteq \mathbb{R}$ be an interval, let $f: I \to \mathbb{R}$, and let $c \in I$. We say that a real number L is the derivative of f at c if given any $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if $x \in I$ satisfies $0 < |x - c| < \delta(\varepsilon)$, then

$$\left|\frac{f(x) - f(c)}{x - c} - L\right| < \varepsilon \tag{2}$$

In this case we say that f is differentiable at c, and we write f'(c) for L. In other words, the derivative of f at c is given by the limit

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
(3)

provided this limit exists. (We allow the possibility that c may be the endpoint of the interval.)

Definition: The derivative of the function f(x), written f'(x), is defined as

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
(4)

if the limit exists. If y = f(x), then $\frac{dy}{dx} = f'(x)$. The n^{th} derivative is

$$y^{(n)} = \frac{dy^{(n-1)}}{dx} = \frac{d}{dx} \left(\frac{d^{n-1}y}{dx^{n-1}} \right) = \frac{d^n y}{dx^n} = f^{(n)}(x)$$
(5)

2 Practice Problems

Problem 1:

$$\lim_{x \to \infty} \frac{x}{x-1} \quad (x \neq 1) \tag{6}$$

Problem 2:
$$\lim_{x \to \infty} (\sqrt{x+1})/x \quad (x > 0) \tag{7}$$

$$\lim_{x \to \infty} \frac{\sqrt{x} - 5}{\sqrt{x} + 3} \quad (x > 0) \tag{8}$$

Problem 4:

$$\lim_{x \to 0} x \cos(1/x) = 0 \tag{9}$$

Problem 5: Let,

$$y = y_0 + v_0 t - \frac{1}{2}gt^2 \tag{10}$$

Use the definition of the derivative to find the instantaneous velocity.